Synaptic Alterations in Mouse Models for Alzheimer Disease-A Special Focus on N-Truncated Abeta 4-42.

نویسندگان

  • Katharina Dietrich
  • Yvonne Bouter
  • Michael Müller
  • Thomas A Bayer
چکیده

This commentary reviews the role of the Alzheimer amyloid peptide Aβ on basal synaptic transmission, synaptic short-term plasticity, as well as short- and long-term potentiation in transgenic mice, with a special focus on N-terminal truncated Aβ4-42. Aβ4-42 is highly abundant in the brain of Alzheimer's disease (AD) patients. It demonstrates increased neurotoxicity compared to full length Aβ, suggesting an important role in the pathogenesis of AD. Transgenic Tg4-42 mice, a model for sporadic AD, express human Aβ4-42 in Cornu Ammonis (CA1) neurons, and develop age-dependent hippocampal neuron loss and neurological deficits. In contrast to other transgenic AD mouse models, the Tg4-42 model exhibits synaptic hyperexcitability, altered synaptic short-term plasticity with no alterations in short- and long-term potentiation. The outcomes of this study are discussed in comparison with controversial results from other AD mouse models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alzheimer therapy with an antibody against N-terminal Abeta 4-X and pyroglutamate Abeta 3-X

Full-length Aβ1-42 and Aβ1-40, N-truncated pyroglutamate Aβ3-42 and Aβ4-42 are major variants in the Alzheimer brain. Aβ4-42 has not been considered as a therapeutic target yet. We demonstrate that the antibody NT4X and its Fab fragment reacting with both the free N-terminus of Aβ4-x and pyroglutamate Aβ3-X mitigated neuron loss in Tg4-42 mice expressing Aβ4-42 and completely rescued spatial re...

متن کامل

Biochemical markers in persons with preclinical familial Alzheimer disease.

BACKGROUND Persons at risk for familial Alzheimer disease (FAD) provide a model in which biomarkers can be studied in presymptomatic disease. METHODS Twenty-one subjects at risk for presenilin-1 (n = 17) or amyloid precursor protein (n = 4) mutations underwent evaluation with the Clinical Dementia Rating (CDR) scale. We obtained plasma from all subjects and CSF from 11. Plasma (Abeta(40), Abe...

متن کامل

Intracellular Accumulation of Amyloid-Beta – A Predictor for Synaptic Dysfunction and Neuron Loss in Alzheimer's Disease

Despite of long-standing evidence that beta-amyloid (Abeta) peptides have detrimental effects on synaptic function, the relationship between Abeta, synaptic and neuron loss is largely unclear. During the last years there is growing evidence that early intraneuronal accumulation of Abeta peptides is one of the key events leading to synaptic and neuronal dysfunction. Many studies have been carrie...

متن کامل

N-truncated Abeta starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody

BACKGROUND The amyloid hypothesis in Alzheimer disease (AD) considers amyloid β peptide (Aβ) deposition causative in triggering down-stream events like neurofibrillary tangles, cell loss, vascular damage and memory decline. In the past years N-truncated Aβ peptides especially N-truncated pyroglutamate AβpE3-42 have been extensively studied. Together with full-length Aβ1-42 and Aβ1-40, N-truncat...

متن کامل

Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment.

Evidence suggests that Alzheimer disease (AD) begins as a disorder of synaptic function, caused in part by increased levels of amyloid beta-peptide 1-42 (Abeta42). Both synaptic and cognitive deficits are reproduced in mice double transgenic for amyloid precursor protein (AA substitution K670N,M671L) and presenilin-1 (AA substitution M146V). Here we demonstrate that brief treatment with the pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2018